
Experiences in Using Cetus

for Source-to-Source Transformations?

Troy A. Johnson, Sang-Ik Lee, Long Fei, Ayon Basumallik, Gautam
Upadhyaya, Rudolf Eigenmann, and Samuel P. Midkiff

School of Electrical & Computer Engineering
Purdue University, West Lafayette IN 47906, USA,

{troyj,sangik,lfei,basumall,gupadhya,eigenman,smidkiff}@ecn.purdue.edu,
http://www.ece.purdue.edu/ParaMount

Abstract. Cetus is a compiler infrastructure for the source-to-source
transformation of programs. Since its creation nearly three years ago, it
has grown to over 12,000 lines of Java code, been made available pub-
lically on the web, and become a basis for several research projects.
We discuss our experience using Cetus for a selection of these research
projects. The focus of this paper is not the projects themselves, but
rather how Cetus made these projects possible, how the needs of these
projects influenced the development of Cetus, and the solutions we ap-
plied to problems we encountered with the infrastructure. We believe the
research community can benefit from such a discussion, as shown by the
strong interest in the mini-workshop on compiler research infrastructures
where some of this information was first presented.

1 Introduction

Parallelizing compiler technology is most mature for the Fortran 77 language [1,
3, 12, 13, 16]. The simplicity of the language without pointers or user-defined
types makes it easy to analyze and to develop many advanced compiler passes. By
contrast, parallelization technology for modern languages, such as Java, C++,
or even C, is still in its infancy. When trying to engage in such research, we
were faced with a serious challenge. We were unable to find a parallelizing com-
piler infrastructure that supported interprocedural analysis, exhibited state-of-
the-art software engineering techniques to help shorten development time, and
allowed us to compile large, realistic applications. We feel these properties are of
paramount importance because they enable a compiler writer to develop “pro-
duction strength” passes. Production strength passes, in turn, can work in the
context of the most up-to-date compiler technology and lead to compiler re-
search that can be evaluated with full suites of realistic applications. The lack
of such thorough evaluations in many current research papers has been observed
and criticized by many. The availability of an easy-to-use compiler infrastructure

? This material is based upon work supported in part by the National Science Foun-
dation under Grant No. 9703180, 9975275, 9986020, and 9974976.

2

would help improve this situation significantly. Hence, continuous research and
development in this area are among the most important tasks of the compiler
community.

Cetus was created with those needs in mind. It supports analyses and trans-
formations at the source level; other infrastructures are more appropriate for
instruction-level compiler research. Cetus is composed of over 10,000 lines of
Java code that implements the Cetus intermediate representation (IR), over
1,500 lines of code that implements source transformations, a C parser using
Antlr, and standalone C and C++ Bison parsers that have yet to be integrated
completely into Cetus. The Cetus IR is the product of three graduate students
working part-time over two years. Several others have contributed analysis and
transformation passes, as well as used Cetus for their own research projects. We
discuss these projects in this paper from the perspective of how Cetus made
these projects possible, how the needs of these projects influenced the develop-
ment of Cetus, and the solutions we applied to problems we encountered with
the infrastructure. We believe the research community can benefit from such a
discussion, as shown by the strong interest in the mini-workshop on compiler
research infrastructures where some of this information was first presented.

Section 2 briefly covers the Cetus IR. In Section 3, we cover basic analysis,
transformation, and instrumentation passes. Section 4 contains five case studies
of more complex passes. Section 5 discusses the effects of user-feedback on the
project. Finally, Section 6 concludes.

2 Cetus Intermediate Representation

For the design of the IR we chose an abstract representation, implemented in
the form of a class hierarchy and accessed through the class member functions.
We consider a strong separation between the implementation and the interface
to be very important. In this way, a change to the implementation may be done
while maintaining the API for its users. It also permits passes to be written
before the IR implementation is ready. These concepts had already proved their
value in the implementation of the Polaris infrastructure [2], which served as
an important example for the Cetus design. Polaris was rewritten three to four
times over its lifetime while keeping the interface, and hence all compilation
passes, nearly unmodified [5]. Cetus has a similar design, shown in Figure 1,
where the high-level interface insulates the pass writer from changes in the base.

Our design goal was a simple IR class hierarchy easily understood by users.
It should also be easy to maintain, while being rich enough to enable future
extension without major modification. The basic building blocks of a program
are the translation units, which represent the content of a source file, and proce-

dures, which represent individual functions. Procedures include a list of simple
or compound statements, representing the program control flow in a hierarchical
way. That is, compound statements, such as IF-constructs and FOR-loops in-
clude inner (simple or compound) statements, representing then and else blocks

3

Fig. 1. Cetus components and interfaces: Components of Cetus only call methods of
the components beneath them. The driver interprets command-line arguments and
initiates the appropriate parser for the input language, which in turn uses the high-
level interface to build the IR. The driver then initiates analysis and transformation
passes. Normalization passes and utilities are provided to perform complex operations
that are useful to multiple passes. The interface functions are kept lean and generally
provide only a single way of performing IR manipulations.

or loop bodies, respectively. Expressions represent the operations being done on
variables, including the assignments to variables.

Cetus’ IR contrasts with the Polaris Fortran translator’s IR in that it uses a
hierarchical statement structure. The Cetus IR directly reflects the block struc-
ture of a program. Polaris lists the statements of each procedure in a flat way,
with a reference to the outer statement being the only way for determining the
block structure. There are also important differences in the representation of ex-
pressions, which further reflects the differences between C and Fortran. The Po-
laris IR includes assignment statements, whereas Cetus represents assignments in
the form of expressions. This corresponds to the C language’s feature to include
assignment side effects in any expression.

The IR is structured such that the original source program can be reproduced,
but this is where source-to-source translators face an intrinsic dilemma. Keeping
the IR and output similar to the input will make it easy for the user to recognize
the transformations applied by the compiler. On the other hand, keeping the IR
language-independent leads to a simpler compiler architecture, but may make it
impossible to reproduce the original source code as output. In Cetus, the concept
of statements and expressions are closely related to the syntax of the C language,
facilitating easy source-to-source translation. The correspondence between syn-
tax and IR is shown in Figure 2. However, the drawback is increased complexity
for pass writers (since they must think in terms of C syntax) and limited ex-
tensibility of Cetus to additional languages. That problem is mitigated by the
provision of several interfaces that represent generic control constructs. Generic
passes can be written using the abstract interface, while more language-specific

4

�������

�����	�
������

��� ��
�����

��������

���������

�
�
����

����������

�������

���
����
�

������ !"�� #$

%

� " &'

%

!� (" � ")*'

+,
��# &-. $%

/0� "�#1& �(/�(�"��23$'

4

4

4

Fig. 2. A program fragment and its IR in Cetus. IR relationships are similar to the
program structure and a symbol table is associated with each block scope.

passes can use the derived classes. For example, the classes that represent for-
loops and while-loops both implement a loop interface. A pass that manipulates
loops may be written using the generic loop interface if the exact type of loop is
not important.

The high-level interface, or IR-API, is the interface presented to compiler
writers. In general the IR-API is kept minimal and free of redundant function-
ality, so as to make it easy to learn about its basic operation and easy to debug.
IR-API calls expect the IR to be in a consistent state upon entry and ensure
the state is consistent upon their return. Cetus also provides a utility package,
that offers convenience to pass writers. The utility package provides additional
functions, where needed by more than a single compiler pass. Obviously, this
criterion will depend on the passes that will be written in the future. Hence,
the utilities will evolve, while we expect the base to remain stable. The utility
functions operate using only the IR-API.

2.1 Navigating the IR

Traversing the IR is a fundamental operation that will be used by every com-
piler pass. Therefore, it is important that traversals be easy to perform and
require little code. Cetus provides an abstract IRIterator class that implements
the standard Java Iterator interface. The classes BreadthFirstIterator, Depth-
FirstIterator, and FlatIterator are all derived from IRIterator. The constructor
for each of these classes accepts as its only parameter a Traversable object which
defines the root of the traversal. Traversable is an interface that ensures any im-
plementing class can act as a node of a tree by providing methods to access its
parent and children. A design alternative here was to have every class provide a
getIterator method instead of passing the root object to an iterator constructor,

5

but that required adding an implementation of getIterator to every class, and
was rejected.1 The DepthFirstIterator visits statements and expressions sequen-
tially in program order without regard to block scope. The BreadthFirstIterator
visits all children of an object before visiting the children’s children; i.e., block
scope is respected with outer objects visited first. The FlatIterator does not
visit the root of the traversal and instead visits the root’s children sequentially
without visiting the children’s children.

In addition to providing a next method, as all Iterators must, an IRIterator
provides next(Class), next(Set), and nextExcept(Set) to allow the caller
to specify that only objects of a certain class, or that belong or do not belong
to a particular set of classes, are of interest. When these methods were first
introduced, we were able to rewrite older Cetus passes using considerably fewer
lines of code. Figure 3 shows the usefulness of these methods.

/* Look for loops in a procedure. Assumes proc is a Procedure object. */

BreadthFirstIterator iter = new BreadthFirstIterator(proc);
try {

while (true)
{

Loop loop = (Loop)iter.next(Loop.class);
// Do something with the loop

}
} catch (NoSuchElementException e) {
}

Fig. 3. Using iterators to find loops within a procedure. Outer loops are discovered
first.

2.2 Type System and Symbol Table

Modern programming languages provide rich type systems. In order to keep
the Cetus type system flexible, we divided the elements of a type into three
concepts: base types, extenders, and modifiers. A complete type is described
by a combination of these three elements. Base types include built-in primitive
types, which have a predefined meaning in programming languages, and user-
defined types. User-defined types are new types introduced into the program by
providing the layout of the structure and the semantics. These include typedef,
struct, union, and enum types in C. Base types are often combined with type
extenders. Examples of type extenders are arrays, pointers, and functions. The
last concept is modifiers which express an attribute of a type, such as const
and volatile in C. They can decorate any part of the type definition. Types
are understood by decoding the description one element at a time, which is a

1 The decision was primarily due to Java’s lack of multiple inheritance, since in most
cases inheritance had already been used.

6

sequential job in nature. We use a list structure to hold type information so that
types can be understood easily by looking at the elements in the list one at a
time.

Another important concept is a symbol, which represents the declaration of a
variable in the program. Symbols are not part of the IR tree and reside in symbol
tables. Our concept of a symbol table is a mapping from a variable name to its
point of declaration, which is located in a certain scope and has all of the type
information. As a result, scope always must be considered when dealing with
symbols. In C, a block structure defines a scope. Therefore, structs in C are also
scopes and their members are represented as local symbols within that scope.
A compiler may use one large symbol table with hashing to locate symbols [4].
In Cetus, since source transformations can move, add, or remove scopes, we
use distributed symbol tables where each scope has a separate physical symbol
table. The logical symbol table for a scope includes its physical symbol table
and the physical symbol tables of the enclosing scopes, with inner declarations
hiding outer declarations. There are certain drawbacks to this approach, namely
the need to search through the full hierarchy of symbol tables to reach a global
symbol [6], but we find it to be convenient. For example, all the declarations in a
scope can be manipulated as a group simply by manipulating that scope’s symbol
table. It is especially convenient in allowing Cetus to support object-oriented
languages, where classes and namespaces may introduce numerous scopes whose
relationships can be expressed through the symbol table hierarchy.

3 Capabilities for Writing Passes

Cetus has a number of features that are useful to pass writers. Classes that
support program analysis, normalization, and modification are discussed below.

3.1 Analysis

Call Graph Cetus provides a CallGraph class that creates a call graph from
a Program object. The call graph maps callers to callees as well as callees to
callers. A pass can query the call graph to determine if a procedure is a leaf of
the call graph or if a procedure is recursive.

Control-Flow Graph Cetus provides a ControlFlowGraph class, which creates
a control-flow graph from a Program object. The graph represents the structure
of each procedure in terms of its basic blocks connected by control-flow edges.

3.2 Normalization

Single Return Compiler passes often become simpler if they can assume that
each procedure has a single exit point. A procedure with multiple return state-
ments complicates such actions as inserting code that should execute just prior

7

to a procedure returning to its caller. To eliminate this problem, the single-return
pass creates a new variable to hold the return value, identifies all return state-
ments, and replaces the return statements with an assignment to the variable
followed immediately by a goto to the end of the procedure. Then, the procedure
is appended with a single return statement that returns the value of the variable.

Single Call Instrumentation passes sometimes need to place code before and
after procedure calls, but most languages allow multiple calls per statement.
Thus, the pass writer has two choices: find a way within the language to insert
their code into an already complex statement, or separate all the calls so there is
one per statement. The first option often is not possible, and when it is, such as
by using the comma operator in C, it results in obfuscated code. Therefore, Cetus
provides a single-call pass to separate statements with multiple calls, including
“unwrapping” nested calls. New variables are introduced to hold return values
and the calls are placed in the appropriate order. It is worth noting that the C
language standard leaves undefined the order of execution of multiple calls in a
statement at the same nesting level. Arbitrarily ordering such calls left to right
did not appear to affect any programs that we tested.

Single Declarator Languages allow multiple symbols to be introduced by a
single declaration. An example is int x, y, z; in C. If a pass needs to copy,
move, or remove the declaration of a single variable, then it must be careful not
to change the rest of the declaration. Cetus provides a single-declarator pass
that would separate the example above into three declarations, allowing passes
to work on individual declarations.

3.3 Modifying the Program

Annotation System The Cetus IR provides an Annotation class that is derived
from the general Declaration class. Annotations can appear wherever declara-
tions can appear, allowing them to appear both inside and outside of procedures.
They can be used to insert comments, pragmas, raw text, or a hash map to act
as a database that facilitates the exchange of information between passes.

Inserting New Code All of the statement and expression classes in the Cetus
IR have constructors that can be used to create new IR. These constructors are
used by the parser to create the IR for the program. Therefore, pass writers are
able to insert new IR in exactly the same way as the parser creates the IR for the
original code. The constructors and other methods of the IR classes check their
arguments to ensure that the IR remains consistent at all times. For example,
an exception is thrown if a duplicate symbol is about to be created, or if an
attempt is made to place the same IR object in two parts of the IR tree.

8

4 Case Studies

Here we present five case studies in which Cetus was used to accomplish more
complex analyses and transformations. Each case study was written by the per-
son who used Cetus for that purpose, so this section represents the experiences
and opinions of five different people.

4.1 Extraction of Loops into Subroutines

A number of loop transformations are more easily applied if the loop is available
as a separate subroutine. The micro-tasking implementation described below in
Section 4.2 is one such example. Separating a loop from a procedure and moving
it to its own procedure faces several issues. There will be values used by the
loop that are defined above the loop and must be passed by value into the new
procedure. There will be values used below the loop that are defined within the
loop and must be passed by reference (or by pointer) into the new procedure.
Cetus has basic use-def analysis to support both of these.

A Cetus utility method to search and replace variables by name is very useful
to this pass. For example, if a variable p is passed to the new procedure via a
pointer (i.e., it was not a pointer in the original code) then all occurrences of p,
must be replaced with *p in the new procedure. The search and replace method
must know to skip replacing names that are structure members, because, for
example, x.*p is not legal C code.

4.2 Translation of OpenMP Applications

One of the early experiences in using Cetus was the creation of an OpenMP
translator pass. OpenMP is currently one of the most popular paradigms for
programming shared-memory parallel applications [7]. Unlike programming with
MPI (message-passing interface), where one inserts communication library calls,
OpenMP programmers use directives that have semantics understood by the
compiler.

Compiler functionality for translating OpenMP falls into two broad cate-
gories. The first category deals with the translation of the OpenMP work-sharing
constructs into a micro-tasking form, requiring the extraction of the work-sharing
code (such as the bodies of parallel loops) into separate micro-tasking subrou-
tines. It also requires inserting corresponding function calls and synchronization.
Cetus provides functionality that is sufficient for these transformations. The sec-
ond category deals with the translation of the OpenMP data clauses, which re-
quires support for accessing and modifying symbol table entries. Cetus provides
several ways in which the pass writer can access the symbol table to add and
delete symbols or change their scope. There are currently two different OpenMP
translators which have been implemented using Cetus. Both of them use the
same OpenMP front end. One translator generates code for shared-memory
systems using the POSIX threads API. The other translator targets software
distributed shared memory systems and was developed as part of a project to

9

extend OpenMP to cluster systems [11]. Although the entire OpenMP 2.0 spec-
ification is not supported yet, the translators are powerful enough to handle
benchmarks such as art and equake , two of the larger applications from the
SPEC OMPM2001 suite.

Cetus is also being used in an ongoing project to translate OpenMP appli-
cations directly to MPI. The project is also a source-to-source translation, but
it makes use of a wider range of compiler techniques and Cetus functionality.
One major component of this transformation is the interprocedural analysis of
array accesses. A regular array section analysis pass was implemented in Cetus
to summarize array accesses within loops using Regular Section Descriptors [8].
The flow graph described in Section 3, along with the regular section analysis
pass, was used to implement an array dataflow pass. The array dataflow pass
is then used to resolve producer-consumer relationships for shared data, and to
insert MPI calls to satisfy these relationships. Three aspects of Cetus greatly
facilitated the development of these passes. First, Cetus provides a rich set of it-
erators for program traversal. Second, Cetus provides functions for conveniently
accessing the symbol tables visible within specific scopes, as well as their parent
scopes. Finally, Cetus provides a convenient interface for the insertion of func-
tion calls at the source level in a program. These aspects of Cetus allowed us to
conveniently create the requisite dataflow passes and insert the MPI calls.

4.3 Pointer Alias Analysis

Pointer analysis generally has two different variations. Points-to analysis is a
program analysis pass that determines the set of memory objects that a pointer
could point to at a given place in the program. Similarly, alias analysis is a
program analysis pass that determines if two pointers can point to the same
memory object at a given place in the program. These two analyses are related
in the sense that alias analysis could be done by doing a points-to analysis first
and then applying set intersection operations.

The goal was to write a context-sensitive and flow-sensitive points-to analysis.
The pass was written using an earlier version of Cetus [10] and updated to use
newer features. To implement a points-to analysis pass, the underlying compiler
has to support several basic features. First, pointer variables should be easy to
identify. This requires adequate symbol table operations. Second, our points-to
analysis is an iterative analysis that traverses the entire program, finding pointer
related expressions and evaluating them until reaching a fixed-point. While the
earlier Cetus version provided limited flexibility for traversing the program IR,
the new functionality mentioned in Section 2 greatly simplified this task.

Writing a flow-sensitive analysis pass requires a control-flow graph, as de-
scribed in Section 3.1. Additionally, program normalization functionality, as per
Section 3.2, helped reduce the complexity of the pass substantially. It resulted
in more regular expressions that needed less special-case handling. Similarly,
normalizing each statement to have a single function call simplified the inter-
procedural analysis pass. We also normalized each statement to have a single

10

assignment. Flow sensitive analysis requires keeping track of changes to points-
to sets at every program point. Saving the entire points-to set per statement
requires excessive memory, so an incremental way of recording the points-to set
change is needed. We implemented a method that records the change to the
points-to set at each program location only. When the pass needs to look at
the entire points-to set, all reaching definitions are looked up. We implemented
this functionality by representing the program in SSA form. The availability of
a control-flow graph was useful for creating the SSA representation.

4.4 Software Debugging

Cetus is a useful tool for source-level instrumentation. The high-level IR keeps
all of the information available from source code. The hierarchical-structured IR
and iterators make it easy to traverse the IR tree. Each object in the IR tree
has its direct corresponding element in the source code. Each Statement object
keeps the line number in the source file of the statement it represents. With
all this information, the user can write an instrumentation pass that does the
transformation analogous to the transformation the user would directly apply
on the source code. That is, the gap between the abstract instrumentation pass
in Cetus and the concrete instrumentation that user expects to apply to the
source code is small. The small gap makes it easy for the user to design an
instrumentation pass with Cetus.

However, there are still limitations. First, creating an IR object (e.g. Symbol,
Expression, Statement) is not easy. For instance, if the user wishes to add
a Statement object into the IR tree, he/she has to create the whole subtree
(with the Statement object as its root). Because the user typically thinks in
C, there is a big gap between the concept of inserting instrumentation into the
source code and creating an IR subtree in the existing IR. It is impractical for
the instrumentation pass writer to build the IR subtree corresponding to the
instrumentation he/she wishes to insert if the instrumentation is complex or if
the pass writer has insufficient knowledge about Cetus parsing and IR imple-
mentation. It would be useful to have an on-demand utility that can properly
parse the instrumentation the user wishes to add (expressed in C) and return
a legal IR subtree that fits into the context. For instance, if the user wishes to
add a printf statement which displays the value of a local variable, the utility
should translate (printf("value = %d", local symbol);) into an IR subtree
and return it to the user. The utility should also make proper changes to the
symbol table and make proper reference to the local symbol used in the instru-
mentation. Such a utility has not been implemented in Cetus because it requires
maintaining multiple parsers (e.g., one for the entire C language, one only for
statements, and one only for expressions), or a parser generator that supports
multiple starting productions.

Second, the requirement to keep the IR tree consistent, as per Section 2,
makes it less flexible to instrument the IR tree. It is a design specification that
every operation on the IR tree should result in a legal IR tree, i.e. in a series

11

of operations, the IR tree should be consistent after every operation. This re-
quirement trades the flexibility in manipulating the IR tree for correctness and
robustness of the IR. However, it is commonplace that instrumentation is done
out of order. For example, if the instrumentation uses temporary data structures,
and an analysis pass is performed after the instrumentation pass to determine
how many of the data structures can be reused to avoid excessive waste of mem-
ory, it is not determined what temporary data structures really needed to be
declared until we finish the analysis pass. In this scenario, it is desirable to add
the uses of the temporary data structures in the instrumentation pass before we
add the declarations of those temporary data structures that are really needed
after the analysis pass. It is sometimes infeasible or not desirable for modular-
ization reasons to interleave the redundancy analysis with the instrumentation
pass.

In order to avoid the two limitations discussed above, we develop a two-
phased instrumentation utility. The first phase is a Cetus instrumentation pass
that traverses the IR tree, performs analysis, and logs the instrumentation oper-
ations needed to be performed (in any order) in an instrumentation profile. The
second phase is an instrumentation program, which reads in the instrumentation
profile generated by the instrumentation pass, rearranges the instrumentation
operations into a proper ordering, and performs the instrumentation operations
on the source files. Different instrumentation tasks need to have different Cetus
instrumentation passes, while the second phase is shared. This instrumentation
utility is used in our past research on the AccMon project [17], where instrumen-
tation is added to turn on runtime monitoring on memory locations that need
to be monitored.

4.5 A Java Byte-Code Translator

We used Cetus to construct a bytecode-to-bytecode translator with the purpose
of experimenting with optimization passes for the Java programming language.
With this infrastructure, we plan on performing quasi-static [14] optimizations at
the bytecode level – these are ahead-of-time optimizations in which assumptions
about other classes are checked at runtime (by an intelligent classloader [9]) to
verify the correctness of the off-line optimizations. We will initially target numer-
ical programs, but longer term will explore more general purpose optimizations.
Our input was a bytecode (Java class) file. We broke up the translation process
as follows. First we read in the bytecode and stored it in standard Java data
structures. Then we constructed an intermediate representation (IR) based on
the data we had gathered. This IR was then used to drive the back-end which
translated the IR into bytecode. Optimization passes will be added to the tool
by acting at the IR, rather than the bytecode, level. Cetus was used as the IR
of choice for our project. We converted our bytecode to Cetus by

1. reading in bytecode into an internal ClassFile data structure, as specified by
Sun in the JVM documentation [15]

12

2. parsing the ClassFile data structure and extracting information about indi-
vidual statements/declarations/ definitions and

3. constructing Cetus IR by performing a mapping between the parsed data
and (Cetus) IR classes.

Our experiences with Cetus have been extremely favorable to date. The
object-orientedness of the tool combined with the abundance of good documen-
tation allowed us to construct our IR in a very short time-span. The only problem
encountered was with the fact that Cetus was designed with C++ and not Java
in mind and while the similarities in the approaches are self-evident, we did
need to modify the code occasionally to facilitate our target language, i.e. Java.
However, the fact that Cetus was written almost entirely in Java proved to be
extremely beneficial since changes made were minimal and rapidly implemented.

5 Users’ Influence on Cetus Development

Beginning with its first usable version and continuing throughout its develop-
ment, Cetus has been used for both research projects and course projects. Feed-
back from the people involved in those projects provided direction for further
development.

One of the first suggestions was to improve the iterators. A tree-structured
IR requires that there be code to traverse the tree. Completely exposing the
traversal code to pass writers places an unnecessary burden on them; hence,
iterators were provided. However, the iterators were not initially provided as
they have been described in this paper – only the standard form of the next

method was provided. Pass writers noted that much of their code was spent
type-checking the object returned by next to decide whether or not it was an
object of interest to them. The solution was to allow the type of the desired
object to be passed to the next method, allowing the method internally to skip
over objects that did not match the specified type, thus hiding the type-checking
code. The savings to the pass writer is only a few lines of code, but those lines are
saved each time an iterator is used. Consensus was that the improved iterators
allowed for shorter, more readable code.

Another example of user-driven improvement was the AssignmentExpression
class. Originally, there was only a BinaryExpression class that was used to repre-
sent all types of binary expressions. The users found this to be very inconvenient
because they often wished to find definitions of a variable. Finding definitions
required them first to search for instances of BinaryExpression and then to test
if each instance was any of the many forms of assignment that the C language
provides. Not only was this process inconvenient, but inefficient, since typical
programs contain a large number of binary expressions. The solution was to
split the duties of the BinaryExpression class by deriving from it an Assign-
mentExpression class. If an object was an instance of AssignmentExpression,
then users knew automatically that it was a binary expression that modified its
lefthand side. Combined with the improved iterators, users could skip the other
binary expressions by requesting that next only return AssignmentExpressions.

13

6 Conclusion

We briefly discussed the Cetus IR and presented five case studies that used Cetus
to perform non-trivial operations. Cetus was shown to have an API sufficient for
a variety of applications. The API has been improved based on users’ feedback.
We observe that most of the difficulties that users encountered were in using
Cetus to find the part of the program they wished to transform or optimize (i.e.,
to find statements or expressions satisfying a certain property); few complaints
dealt with using Cetus to perform the actual transformation. It is interesting
to consider if developers of other compiler infrastructures have noticed a similar
phenomenon.

Overall, Cetus’ users have found it to be a useful tool, and with the program
and source code now available for download, we expect that more people will
make use of Cetus. Future development focuses on adding support for C++ and
finding additional ways to shorten the code necessary for writing passes.

References

1. P. Banerjee, J. A. Chandy, M. Gupta, et al. The PARADIGM Compiler for
Distributed-Memory Multicomputers. IEEE Computer, 28(10):37–47, October
1995.

2. W. Blume, R. Doallo, R. Eigenmann, et al. Advanced Program Restructuring for
High-Performance Computers with Polaris. IEEE Computer, pages 78–82, Decem-
ber 1996.

3. W. Blume, R. Eigenmann, et al. Restructuring Programs for High-Speed Comput-
ers with Polaris. In ICPP Workshop, pages 149–161, 1996.

4. R. P. Cook and T. J. LeBlanc. A Symbol Table Abstraction to Implement Lan-
guages with Explicit Scope Control. IEEE Transactions on Software Engineering,
9(1):8–12, January 1983.

5. K. A. Faigin, S. A. Weatherford, J. P. Hoeflinger, D. A. Padua, and P. M. Pe-
tersen. The Polaris Internal Representation. International Journal of Parallel
Programming, 22(5):553–586, 1994.

6. C. N. Fischer and R. J. LeBlanc Jr. Crafting a Compiler. Benjamin/Cummings,
1988.

7. O. Forum. OpenMP: A Proposed Industry Standard API for Shared Memory
Programming. Technical report, Oct. 1997.

8. P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular
section analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350–
360, 1991.

9. G. C. Lee and S. P. Midkiff. Ninja 2: Towards fast, portable, numerical Java. In
Workshop on Compilers for Parallel Computing, July 2004.

10. S.-I. Lee, T. A. Johnson, and R. Eigenmann. Cetus - An Extensible Compiler
Infrastructure for Source-to-Source Transformation. In 16th International Work-
shop on Languages and Compilers for Parallel Computing (LCPC), pages 539–553,
October 2003.

11. S.-J. Min, A. Basumallik, and R. Eigenmann. Optimizing OpenMP programs on
Software Distributed Shared Memory Systems. International Journal of Parallel
Programming, 31(3):225–249, June 2003.

14

12. T. N. Nguyen, J. Gu, and Z. Li. An Interprocedural Parallelizing Compiler and
Its Support for Memory Hierarchy Research. In Proceedings of the International
Workshop on Languages and Compilers for Parallel Computing (LCPC), pages
96–110, 1995.

13. C. Polychronopoulos, M. B. Girkar, et al. The Structure of Parafrase-2: An Ad-
vanced Parallelizing Compiler for C and Fortran. In Languages and Compilers for
Parallel Computing. MIT Press, 1990.

14. M. J. Serrano, R. Bordawekar, S. P. Midkiff, and M. Gupta. Quicksilver: a Quasi-
Static Compiler for Java. In Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 66–82, 2000.

15. Sun Microsystems. The Java Virtual Machine Specification.
16. R. P. Wilson, R. S. French, et al. SUIF: An Infrastructure for Research on Paral-

lelizing and Optimizing Compilers. SIGPLAN Notices, 29(12):31–37, 1994.
17. P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and J. Torrellas.

AccMon: Automatically detecting memory-related bugs via program counter-based
invariants. In Proceedings of the 37th Annual IEEE/ACM International Symposium
on Micro-architecture (MICRO’04), 2004.

